
Benefits to the Simulation Training
Community of a New ANSI Standard for the

Exchange of Aero Simulation Models
Unclassified

Bruce Hildreth
JFTI

E. Bruce Jackson
NASA Langley Research Center

Problem

• Training simulator issues
– High development cost
– Difficult and costly to maintain s/w
– Difficult and costly to make s/w upgrades

• Result
– Aircraft models lag behind the aircraft

configuration
– Aircraft models are not the best available

The fidelity of the model suffers -> crew training suffers

Presenter
Presentation Notes
Why aren’t our aircrew flying the best simulators out there?

Many Simulations are Available
to Solve the Problem

• Prime manufacturer’s developmental
simulations

• DoD RDT&E simulators
• NASA RDT&E simulators
• Customer Country simulators
• Part-task crew training simulators
• Full fidelity crew training simulators
• Mission training simulators
How can we lower the barriers to collaboration between

these simulators?

My definition of collaboration-
relative to training simulation

• Assuring what is learned at one simulator
benefits another simulator

• Examples
– Simulator A learns that a model aero function is

wrong and corrects it
– Simulator B changes it’s model to validate it’s

Power Approach (PA) database
– Simulator C adds a high angle of attack database
– Simulator D adds higher actuator fidelity model to

simulate an actuator malfunction

Collaboration is sharing this information- the standard
makes this easier

Understanding the Problem-how
do we collaborate?

Prime
Manufacturer

DoD RDT&E

NASA

Customer
Countries

Part-task
Trainers

Full Flight
Trainers

Full Mission
Trainers

Each simulator has many different communication links

Presenter
Presentation Notes
59 Simulators in the 2002 reference have 1711 links

Prime
Manufacturer

DoD RDT&E

NASA

Customer
Countries

Part-task
Trainers

Full Flight
Trainers

Full Mission
Trainers

Solving the Problem- an
Exchange Standard

Now Each Simulator has one fixed communication link

The
Standard
DAVE-ML

Only data
exchanged
No s/w rebuild

Presenter
Presentation Notes
59 Simulators in the 2002 reference have 1711 links

Information Required

Common
Language

Common
Physics

Common
Data

Successful Model
Exchange

The
Standard

Information
Required

Equations
Checkcases

Function
Data

Variable Naming
Convention

Standard
Variable Names

Standard
Axis Systems

Standard
Time History

Data

Standard
Model Definition

Data

FuturePresent

More than data is required, you must define the data

Exchanging a Model Requires
More than Data

• The Standard Includes
– Data

• Function tables and static data
• Function table check cases

– Simple model definition (simple equations)
– Definition of the data through:

• Standard variable names and detailed
definition

• Standard axis systems to provide the basis of
definition of the variable names

This is captured in an XML Schema named DAVE-ML

The Solution (at Least the
Beginning of the Solution)

• AIAA/ANSI S-119-200x, “Flight
Dynamics Model Exchange Standard”

• Status
– Sponsored by the American Institute of

Aeronautics and Astronautics (AIAA)
Modeling and Simulation Technical
Committee

– Has completed public review
– In final editing and production

Standard Exchange Format
• W3C/ISO standards-based

– XML markup grammar (DAVE-ML)
– Reuses MathML 2 for equations
– ANSI/AIAA Recommended Practice R-004-1992

(Axis Systems)
– ISO 1151-1 through 9:1982-1998 (Concepts and

quantities)
– ISO 31-0:1992-1998 (Quantities and units)
– ISO 8601:2004 (date formats)

• Implements other elements of the Standard

A plethora of XML editing/parsing toolsets are available

Features of DAVE-ML

• XML grammar (defined in a DTD)
• n-dimensional function tables

– both gridded and ungridded
• Buildup equations
• Extensible function definitions
• Provenance and data references
• Modification log/record
• Verification/checkcase data

Presenter
Presentation Notes
Started with “Aero models”

A DAVE-ML model is a…

• Human readable
• Machine readable
• Standalone
• Archivable
• Software-language agnostic
• Simulation-hardware agnostic
• Simulation-framework agnostic
subsystem model definition text file

Typical DAVE-ML application

• Most likely DAVE-ML application is an
aero model for engineering or training
simulation

• Also can be used in analysis tools;
Simulink import tool available

• Can model other static subsystems
(e.g. mass/inertia, engine thrust table)

• Possible to model dynamic elements,
too (serves as nonlinear function)

Three Major Components

• Standard axis systems
• Standard variable naming convention

and names
• Standard functions and static equation

implementation

Standard Axis Systems

Clearly defined and used in the variable names

Earth centered Inertial (Geocentric inertial) Ei
Earth centered earth fixed (Geocentric Earth fixed) Ge
Vehicle-carried Orbit defined Vo
Vehicle-carried normal Earth Ve
Body Body
Wind Wind
Stability Sa
Flight Path Fp
total Angle of Attack Aa
Locally Level Ll
Flat Earth Fe
Structural St

Presenter
Presentation Notes
Can certainly make more axis systems, a structural system ie an example

Standard Variable Naming
Convention

• Methodology for creating variable names
• 9 Components if all possibilities of naming

are used
• Table of already defined variables

Object is to simplify and clarify communication

Variable Name Examples
• Common Examples

– angleOfAttack_r
– bodyAccel_d_s2_Pitch
– s_BodyAccel_r_s2[Roll] or s_BodyAccel_r_s2[0]

• Full name examples- Maximum of 9 components
– config_S_StructuralReferencePositionOfPilotEyeWrtCgIc_f_X
– config.s_StructuralReferencePositionOfPilotEyeWrtCgIc_f[X]
– config.s_StructuralReferencePositionOfPilotEyeWrtCgIc_f[0]

Domain

State,
state
derivative

or
control

Axis system

Core variable name

Of reference point
on vehicle

Wrt what frame
of reference

IC designation

Units

Specific axis

Benefits-Standard Variable
Names

• Compare
CLFlapsUp = CLALFA*angleOfAttack + CLDe
* de + CLQ*pRate*Chord/(2.0*trueAirspeed)

Vs
CLFlapsUp = CLALFA__r*angleOfAttack_r + CLDe__d *
de_d + CLQ*pRate_r_s*Chord_f
/(2.0*trueAirspeed_f_s)

Vs
CLFlapsUp = CLALFA__r*angleOfAttack_r + CLDe__d *
de_d + CLQ *pRate_r_s *Chord_f/
(2.0*trueAirspeed_m_s)

Vs
CLFlapsUp = CLALFA_r_1*angleOfAttack_r + CLDe__d *
averageElevatorDeflection_d +
CLQ*bodyRate_r_s_Pitch*referenceWingChord_m
/(2.0*trueAirspeed_m_s)

Standard
variable
names in
yellow

The use of units and standard variable names makes this code much clearer,
therefore communication is clearer

Benefits-Standard Variable
Names

• Example: which is clearer?
– fuelTankLocation [4,3] =
– fuelTankCentroidWrtMrc_m[4,3] =

The use standard variable names makes communication easier

Standard
variable
names in
yellow

fuelTankCentroidWrtMrc_f
[number of fuel tanks,3]

Matrix used to locate the centroids of the fuel
tanks. Each vehicle tank is normally
numbered and the matrix should be ordered
according to fuel tank number. The second
component is the x, y and z moment arms
from the moment reference center to the tank
centroid in the vehicle structural axis. In the
absence of tank numbering, the convention
of port to starboard, upper to lower, then
front to rear should be used.

Tank centroid
behind, right,
and below the
moment
reference

center .

Standard Variable Name Definition

Flexible function tables

• Separate definitions of function data
• Separate definitions of breakpoint sets
• Joined together to define a non-linear

function
• Various interpolation order and

extrapolation specifications
• Unlimited number of dimensions
• Can include checkcases

Benefits-DAVE-ML Functions
CLALFA(angleOfAttack_d,mach,avgElevatorDeflection_d)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-20 0 20 40 60 80 100 120

angleOfAttack_d

mach=0.6,
avgElevatorDeflection_d=-5

mach=0.7,
avgElevatorDeflection_d=-5

mach=0.8,
avgElevatorDeflection_d=-5

mach=0.6,
avgElevatorDeflection_d=0

mach=0.8,
avgElevatorDeflection_d=0

• What is missing?

The usefulness of data is very limited without the information behind the data

Benefits-DAVE-ML Functions
• The standard adds

– Provenance
• References to the

source data
• Authorship
• Change

documentation
– Confidence Intervals
– Check cases
– Hooks to standard

variables
• Import/Export tools- a

standard mechanization
for access

CLALFA(angleOfAttack_d,mach,avgElevatorDeflection_d)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-20 0 20 40 60 80 100 120

angleOfAttack_d

mach=0.6,
avgElevatorDeflection_d=-5

mach=0.7,
avgElevatorDeflection_d=-5

mach=0.8,
avgElevatorDeflection_d=-5

mach=0.6,
avgElevatorDeflection_d=0

mach=0.8,
avgElevatorDeflection_d=0

The standard encourages inclusion of provenance and check cases

Flexible function definitions

• Uses MathML calculation grammar
• Calculations can depend on tables, or

vice-versa
• Support for constants, inputs, internal

calculations, and output variables
• Checkcases can include internal values
• MathML function definitions can be

extended for aerospace (e.g. atan2, …)

Typical usage
• Develop script (PERL, Java, Ruby,

Python) to export from original aero
data source format to DAVE-ML; mostly
automated with some manual editing

• Need to generate checkcase data
• DAVE-ML then serves as new source

document
• Develop (one time) script to import
• Can be shared quickly with others
KEY: Import/Export tools only need to be created once!

Examples of DAVE-ML
applications

• NASA:
– F-16 subsonic aero (non-linear)
– HL-20 lifting body aero (Mach 0.5 – 4.0)
– Blended-Wing-Body aero (750 K data

points)
– Orion capsule and launch abort stack

• DSTO: Threat models
• US Navy: NextGen Threat

System (NGTS)

Available DAVE-ML tools

• Janus: software API to read/write/verify
DAVE-ML models (courtesy DSTO)

• DAVEtools: Java package to evaluate
DAVE-ML models; can generate
Simulink models (NASA LaRC)

• GENESIM: can generate C++ models
from DAVE-ML (SourceForge)

See complete list at daveml.nasa.gov

Available XML tools

Roll-your-own API by using
• libxml2 (open source) C++ library for

XML import/export
• Jdom (open source) Java package for

XML import/export
Generic XML editing packages
• oXygen XML editor (commercial;

also supports Eclipse IDE plug-in)

Summary-Benefits
• Improved fidelity through collaboration

– Improved model fidelity results in improved
training

• Lower cost of simulation
– Development- use existing models
– Support

• Facilitates tech refresh
• Easy to incorporate model improvements developed

elsewhere
• Improved simulator documentation

• Low cost/risk to using the standard

Low risk to adopt- high potential return

The Future
• Standard must be maintained and changed

to meet user requirements
– More standard axis systems
– More standard variable names

• Time history data exchange-Standard has
static function check capability- needs time
history data format exchange capability to
facilitate simulation validation

• Complete Dynamic Model Definition-
something like MATLAB and Simulink

A standard must grow to meet future requirements

Resources

• Project website: http://daveml.nasa.gov
• Simulation standards discussion list:

sim-stds-subscribe@lists.nasa.gov or
view archives at website

Coming soon: AIAA S-119 website

http://daveml.nasa.gov/
mailto:sim-stds-subscribe@lists.nasa.gov

Backup

Benefits-Standard Variable Name
Convention

• Velocity or airspeed
• UBodyVelocity
• UBodyVelocity_f_s (std defaults to GG and inertial

references)
• UBodyVelocityWRTInertial_f_s
• UBodyVelocityOfCGWRTInertial_f_s
• UBodyVelocityOfPitotProbeWRTWind_f_s
• totalVelocityOFCGWRTGround_f_s
• XGEVelocity_m_s
• Altitude
• heightOfCGWRTTerrain_f
• heightOfCGWRTMSL_f
• heightOfRadAltWRTTerrain_f
• longitudeOfIMUWRTWGS84_d
• longitudeOfCGWRTWGS84_d
• longitudeOfPilotEyeCGWRTWGS84_d

The use of units and standard variable names makes this code much clearer,
therefore communication is clearer

Standard
variable
names in
yellow

Axis system references

Function Example

0

cm(angleOfAttack_d)

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

0 20 40 60 80 100

angleOfAttack_d

cm

Function Example- FileHeader
component

<fileHeader>
<author name="Bruce Hildreth" org="SAIC"

email="bruce.hildreth@saic.com"/>
<fileCreationDate date="2006-03-18"/>
<description>
This is made up data to use as an example of a simple gridded
function.

</description>
<reference refID="BLHRpt1" author="Joe Smith"

title="A Generic Aircraft Simulation Model (does not really
exist)"

accession="ISBN 1-2345-678-9" date="2004-01-01"/>
<!-- no modifications so far, so we don't need a modificationRecord

yet -->
</fileHeader>

Presenter
Presentation Notes
Also note that there is not much information in this header,

 Mainly because it is mean to be a simple example. In

 reality, probably the most important information is the

 author, the reference and the modification record, because

 these data describe where the data came from and if it has

 been changed (and how). See annex B for more complete

 examples.

Function Example- Variable
Definitions

<!-- Input variable -->

<variableDef name="Angle of attack" varID="angleOfAttack_d"
units="deg" >

<isStdAIAA/>
</variableDef>

<!-- Output (function value) -->
<variableDef name="Pitching moment coefficient due to angle of attack"

varID="CmAlfa" units="nondimensional" sign="+ANU">
<description>
The derivative of total pitching moment with respect to
angle of attack.

</description>
</variableDef>

Presenter
Presentation Notes
 <isStdAIAA/> <!-- Indicates that this variable is a standard

 variable, which is why the author omitted

 description and sign convention

 and any other info. (it certainly could

 be included here)

Function Example-Breakpoint
Definition

<breakpointDef bpID="angleOfAttack_d_bp1">
<description>

Angle of attack breakpoint set for CmAlfa, CdAlfa, and ClAlfa
</description>
<bpVals>
0, 18, 19, 20, 22, 23, 25, 27, 90

</bpVals>
</breakpointDef>

Presenter
Presentation Notes
 Note that the bpID can be any name for the breakpoints. The

 author here chose to use a name related to the independent

 variable that is expected to be used to look up the function. In

 fact, if this set of breakpoints were shared by many functions

 and different independent variables would be used to look up the

 function, then the bpID of "angleOfAttack_d_BP1" would be

 misleading and a more generic name like "AOA" would probably be

 better.

Function Example-Gridded Table
Definition

<griddedTableDef gtID="CmAlfa_Table1">
<description>

The derivate of Cm wrt fuselage AOA in degrees
</description>
<provenance>

<author name="Jake Smith" org="AlCorp"/>
<functionCreationDate date="2006-12-31"/>
<documentRef refID="BLHRpt1" />

</provenance>
<breakpointRefs>

<bpRef bpID="angleOfAttack_d_bp1" />
</breakpointRefs>
<uncertainty effect="percentage">

<normalPDF numSigmas="3">
<bounds>12</bounds>

</normalPDF>
</uncertainty>
<dataTable> <!-- Always comma separated values -->

0.1,-0.1,-0.09, -.08, -0.05, -0.05, -0.07, -0.15, -0.6
</dataTable>
</griddedTableDef>

Presenter
Presentation Notes
 <documentRef refID="BLHRpt1" /> <!-- This points back to the Header,

 which provides the information

 about BLHRpt1. -->

Function Example-Function
Definition

• <function name="Cm_alpha_func">
• <description>
• Variation of pitching moment coefficient with angle of attack

(example)
• </description>
• <independentVarRef varID="angleOfAttack_d"/>
• <dependentVarRef varID="CmAlfa"/>
• <functionDefn>
• <griddedTableRef gtID="CmAlfa_Table1"/>
• </functionDefn>
• </function>

Presenter
Presentation Notes
<!-- The function definition ties together input and output variables

 to table definitions. This allows a level of abstraction such

 that the table, with it's breakpoint definitions, can be reused

 by several functions (such as left and right aileron or multiple

 thruster effect tables).

<!-- The function definition ties together input and output variables

 to table definitions. This allows a level of abstraction such

 that the table, with it's breakpoint definitions, can be reused

 by several functions (such as left and right aileron or multiple

 thruster effect tables).

 -->

Function Example-Check Cases
<checkData>

<staticShot name="case 1">
<checkInputs>
<signal>
<varID>angleOfAttack_d</varID>
<signalValue> 5.</signalValue>
</signal>

</checkInputs>
<checkOutputs>
<signal>
<varID>CmAlfa</varID>
<signalValue>0.04444444</signalValue>
<tol>0.00001</tol>
</signal>

</checkOutputs>
</staticShot>
<staticShot name="case 2">

<checkInputs>
.
.

0

cm(angleOfAttack_d)

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

0 20 40 60 80 100

angleOfAttack_d

cm

Presenter
Presentation Notes
<!-- Checkcase data provides automatic verification of the model by

 specifying the tolerance in output values for a given set of

 input values. One 'staticShot' is required per input/output

 mapping; in this case for a single input, single output model,

 we have a single input signal and a single output signal in each

 test point.

 -->

	Benefits to the Simulation Training Community of a New ANSI Standard for the Exchange of Aero Simulation Models�Unclassified
	Problem
	Many Simulations are Available to Solve the Problem
	My definition of collaboration-relative to training simulation
	Understanding the Problem-how do we collaborate?
	Solving the Problem- an Exchange Standard
	Information Required
	Exchanging a Model Requires More than Data
	The Solution (at Least the Beginning of the Solution)
	Standard Exchange Format
	Features of DAVE-ML
	A DAVE-ML model is a…
	Typical DAVE-ML application
	Three Major Components
	Standard Axis Systems
	Standard Variable Naming Convention
	Variable Name Examples
	Benefits-Standard Variable Names
	Benefits-Standard Variable Names
	Flexible function tables
	Benefits-DAVE-ML Functions
	Benefits-DAVE-ML Functions
	Flexible function definitions
	Typical usage
	Examples of DAVE-ML applications
	Available DAVE-ML tools
	Available XML tools
	Summary-Benefits
	The Future
	Resources
	Backup
	Benefits-Standard Variable Name Convention
	Function Example
	Function Example- FileHeader component
	Function Example- Variable Definitions
	Function Example-Breakpoint Definition
	Function Example-Gridded Table Definition
	Function Example-Function Definition
	Function Example-Check Cases

